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1 About this Report 
 
This report outlines the integration of authoritative Copernicus Climate Data from the Climate 
Data Store (CDS) into a Sustainable Asset Valuation (SAVi). It describes how several climate 
indicators obtained from the CDS were integrated into the SAVi Irrigation model and how the 
analysis performed by SAVi has improved as a result. In light of this integration, IISD is able to 
generate sophisticated SAVi-derived analyses on the costs of climate-related risks and climate-
related externalities. 
 
The integration of Copernicus Climate Data into other SAVi models for energy, roads, wastewater 
treatment infrastructure, buildings, and nature-based infrastructure can be found here.  
 
This document presents: 
 
• A summary of the literature review on the impact of climate on irrigation infrastructure, 

including equations that link climate variables to the economic performance of irrigation 
projects.  

• How the above information was used to select relevant indicators from the Copernicus 
database. 

• How outputs of the CDS datasets are integrated into the SAVi System Dynamics (SD) Irrigation 
model. 

• How simulation results can be affected by these new and improved set of indicators. 
 
 
 
This report is organized as follows. 
 
Literature review 
 
The literature review contains the following subsections for each of the climate variables 
discussed for irrigation infrastructure:  
 

• Subsection 1: An overview of climate impacts on the asset (e.g., how precipitation affects 
irrigation infrastructure).  

• Subsection 2: A presentation of papers/reports that provide case studies that summarize 
the range of impacts estimated or observed (e.g., across countries).  

• Subsection 3: A description of the methodology found in the literature for the calculation 
of climate impacts on the infrastructure asset. 

• Subsection 4:  A selection of CDS datasets required by the equations. 
 
 
Integration of the Literature Review with the CDS Dataset 
 

https://www.iisd.org/publications/integrating-climate-data-savi-model
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This section summarizes information on what datasets are being used from the Copernicus 
database and what additional processing was applied before integration into the SAVi Irrigation 
model. We first review the equations to determine their usefulness for SAVi models. We then 
assess what data requirements for each of the equations are available in the Copernicus database 
and create indicators for climate variables that are relevant for the equations selected. Finally, in 
certain cases, we create indicators in the CDS Toolbox for first-order impacts on infrastructure. 
Second- and third-order impacts will be estimated with SAVi, making use of additional equations 
included in the SD model. 
 
Integration of Climate Indicators Into the SAVi Irrigation Model 
 
This section explains how the CDS indicators are used in the SAVi SD model for irrigation 
infrastructure. It includes an identification of specific performance indicators for each asset 
impacted by climate indicators (e.g., efficiency and cost).  
 
Behavioural Impacts Resulting From the Integration of Climate Variables 
 
This sections discusses how climate variables affect asset performance in the SD model, providing 
early insights as to how the results of the SAVi analysis may change when equipping the model 
with more and better refined climate indicators (e.g., with the cost of infrastructure being higher 
due to increased maintenance, the economic viability of the infrastructure asset, expressed as 
the Internal Rate of Return [IRR], will be lower than expected).  

 
Simulation Results 
 
The final section of this paper presents the equations used and quantitative results emerging from 
the inclusion of climate indicators in the SAVi Irrigation model under various climate scenarios. 
This is the end product of the enhanced SAVi model, which is used to inform policy and investment 
decisions for infrastructure. Table 1 provides an overview of climate drivers, impacts, and relevant 
SAVi output indicators. 
 
The CDS datasets are accessed via the CDS application programming interface (API), and 
additional processing and packaging for use in SAVi is done offline. Technical information about 
the offline code is found in Annex I. We also selected a subset of the most-used indicators and 
created an app in the CDS Toolbox with interactive visualization for demonstration purposes. 
 

Table 1. Overview of variables and impacts implemented in the SAVi Irrigation model 

 
SAVi module Implemented 

impact 
Main climate drivers Affected output indicators 

Irrigation Seasonal 
precipitation 

• Precipitation • Irrigation water 
requirements 

• Crop water supply 
• Average crop yields 

https://cds.climate.copernicus.eu/apps/27053/iisd-demo
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SAVi module Implemented 
impact 

Main climate drivers Affected output indicators 

Average 
precipitation 

• Precipitation • Irrigation water 
requirements 

• Crop water supply 
• Average crop yields 

Seasonal 
temperature 

• Temperature • Irrigation water 
requirements 

• Crop water supply 
• Average crop yields 

Average 
temperature 

• Temperature • Irrigation water 
requirements 

• Crop water supply 
• Average crop yields 

Net irrigation 
requirements per 
hectare 

• Precipitation • Water cost for irrigation 
• Average crop yields 

Total irrigation 
requirements per 
hectare 

• Precipitation • Total annual irrigation 
requirements  

• Water cost for irrigation 
Indicated surface 
water supply 

• Precipitation 
• Temperature 

• Annual water supply 
from surface water 
sources 

• Quantity of water 
available for irrigation 
from surface water 

• Water stress  
• Water balance 

Indicated 
groundwater 
supply 

• Precipitation 
• Temperature 

• Annual water supply 
from surface water 
sources 

• Quantity of water 
available for irrigation 
from surface water 

• Water stress  
• Water balance 
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2 Irrigation 
 

2.1 Literature review 

2.1.1 Demand for irrigation 
 
Crop efficiency, or land productivity, depends on soil quality, climate and human inputs. Climate 
considers precipitation, evapotranspiration, moisture, and more. Water availability is critical for 
agriculture production, but its relevance changes depending on the type of crop considered. This 
is due to varying degrees of resilience to water scarcity, as well as to different growing cycles.  
 
There is an optimal amount of water required for each crop. To realize the maximum yield 
potential, the water that is not made available by precipitation has to be provided by irrigation 
infrastructure. Weather can also impact the irrigation system regarding different water pumping 
technologies such as photovoltaic, diesel motors or grid efficiency. 

2.1.1.1 Water and irrigation requirement 
 

● Climate impact 
 
Precipitation influences the amount of water a crop has at his disposal (this is called rainfed 
agriculture in the absence of irrigation infrastructure). In the case of water shortages, a crop 
either grows less or doesn’t grow at all.  
 

● Summary of results 
 
Yield decrease relative to changes in air temperatures depends on type of field, location, and 
several ecological indicators. 
We found that for each 1˚C increase in temperature, the impact on [Wheat; Rice; Maize; Soybean; 
Barley] would be a decrease in yield of [-6.0 ± 2.9% per °C increase in temperature and -50 to 
100% under RCP 2.6-8.5; -3.2 ± 3.7%; −7.4 to -4 ± 4.5%; -3.1%; -50 to 100% under RCP 2.6-8.5] 
respectively.  
In a specific study for maize, the crop water use efficiency was 1.53 kg/m3 and the irrigation or 
field water use efficiency was 1.74 kg/m3. Crop water use efficiency is the yield of the crop per 
unit of water lost through evapotranspiration of the crop. In contrast, field water use efficiency is 
the ratio of yield of the crop to total amount of water used in the field. So, the difference between 
the two indicators is that the field water use efficiency considers water losses, while the crop 
water use efficiency only considers the water directly used by the plant. 
For Winter Wheat/Barley and fodder Maize, under RCP 2.6 and RCP 8.5, the irrigation water 
requirement will increase by 38-79% and 0.7-4.1% respectively. 
For the irrigation system, using solar PV for water pumping, from an optimal threshold of 28˚C, 
for each 1˚C increase in temperature, there will be a decrease of 0.45% in efficiency. 
For more information, Figure 26; Figure 27 and Figure 28 clearly display those results. 
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● Results 

 
Impact of temperature increases on crop yields (Zhao, et al., 2017): 
Zhao et al. (2017) investigated the impacts of temperature on yields of four crops by compiling 
extensive published results from four analytical methods: global grid-based and local point-based 
models, statistical regressions, and field-warming experiments. The four crops analyzed are 
wheat, rice, maize and soybean, which are the most important crops for global food supply. The 
results from the four different methods demonstrated negative temperature impacts on global 
crop yields (effects without CO2 fertilization, effective adaptation, and genetic improvement): 
each degree-Celsius increase in global mean temperature would, on average, reduce global yields 
of 

• Wheat by 6.0%,  
• Rice by 3.2%,  
• Maize by 7.4%,  
• Soybean by 3.1%.  

 
The results are heterogeneous across crops and geographical areas, sometimes increasing 
temperatures even have positive impacts. Projected changes in yield due to temperature changes 
by the end of the 21st century are showed in Figure 26. (CIs of 95% are given in square brackets). 
 

Figure 1 -  Projected changes in yield due to changes in temperature 

 
A limitation of Zhao et al. (2017) is that it is based on the assumption that yield responses to 
temperature increase are linear, while yield response differs depending on growing season 
temperature levels. 
 
According to Zhao et al. (2017), the impacts of increasing temperatures differ considerably for the 
four crops modeled. Impacts also differ in the crop’s main producer countries. 
The yield lost for each °C increase is largest for maize: −7.4 ± 4.5% per °C. This impact varies in the 
four largest maize producer countries: United States (−10.3 ± 5.4% per °C), China (−8.0 ± 6.1% per 
°C), Brazil (−5.5 ± 4.5% per °C), and India (−5.2 ± 4.5% per ° C).  
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For wheat, yields are modeled to decrease by 6.0 ± 2.9% per °C increase in temperature. Impacts 
are spatially very heterogeneous: United States (−5.5 ± 4.4% per °C), France (−6.0 ± 4.2% per °C), 
India (−9.1 ± 5.4% per °C), Russia (−7.8 ± 6.3% per °C), and China (-2.6 ± 3.1% per °C).  
The impact of temperature increases on rice is smaller than for maize or wheat. Yields might 
decrease by 3.2 ± 3.7% per °C. We see a large impact in India (−6.6 ± 3.8% per °C).  
The impact of rising temperatures on soybean yields (-3.1% per °C) is not statistically significant 
due to large uncertainties in each method. Impacts in Brazil, Argentina, and Paraguay might be 
similar to the -3.1% per °C. The largest reduction is in the United States (−6.8 ± 7.1% per °C). 
 
 
Water use efficiency (Djaman, et al., 2018): 
In the southwest of the United States, Djaman et al. (2018) assessed crop water use for water 
management and planning under conservation agriculture. Precisely, they assessed maize water 
use and water productivity under full irrigation from 2011-2014 and 2017, in the Four Corners 
region of New Mexico. The result was that: 
 

- Maize crop water use efficiency ranged from 1.3 to 1.9 kg/m3 and averaged 1.53 kg/m3. 
- Evapotranspiration water use efficiency values were higher than crop water use efficiency 

and varied from 2.0 to 2.3 kg/m3, averaging 2.1 kg/m3 
Maize irrigation water use efficiency varied with years and averaged 1.74 kg/m3 
 
Yield depending on available water (Mirgol, Nazari, & Eteghadipour, 2020): 
The study investigated the impact of climate change on the future irrigation water requirement 
(IR) and yield of three crops: winter wheat, barley, and fodder maize.  The study analyzed these 
impacts specifically for the semi-arid Qazvin Plateau in Iran for the periods 2016–2040, 2041–
2065, and 2066–2090. For the projection of the monthly minimum and maximum temperature as 
well as the regional monthly precipitation, Mirgol et al. used the Canadian Earth System Model 
(CanESM2) and applied the IPCC scenarios RCP2.6, RCP4.5, and RCP8.5 
 
They found out that the precipitation will decrease (1%–13%) under all scenarios in all months of 
the future periods, (except in August, September, and October).  
The irrigation water requirement of winter wheat and barley will increase by 38%–79% (scenarios 
rcp2.6 and rcp8.5). The increase in the IR of fodder maize will be very slight (0.7%–4.1%). For more 
details on the irrigation water requirements see Figure 27. 
The yield of winter wheat and barley will decrease by ~50%–100% (scenarios rcp2.6 and rcp8.5). 
The reduction in the yield of maize will be about 4%. For details on the yield see Figure 28. 
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Solar-Powered Irrigation Systems (Schnetzer & Pluschke, 2017): 
Air temperature has an influence on SPIS systems. (optimum performance of PV panels around 
28°C average with a decrease in efficiency of 0.45 percent for every degree above optimum 
temperature as rule of thumb) and the depth of the water source relative to the altitude where 
the water is utilized (pumping head; typically up to 70 m, but greater heads are technically 
feasible). They also report from 3 different references: (Ould-Amrouche, Rekioua, & Hamidat, 
2010 ); (GIZ, 2016); (Parliamentary Office of Science and Technology (POST), 2011): The emissions 
of CO2 for solar, diesel and grid efficiency: 
 

Figure 4 – CO2 emissions from 3 different technologies. 

 
 

● Methodology 
 

Figure 2 Change of irrigation water requirements 

Figure 3 Change of yields 
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1. Irrigation water requirement 
 

NWA = PR + DP + Ro – Pe / Eff 
 
Whereby: 
NWA = Net Water Available in mm per month 
PR = pre-irrigation, soil moisture change between t0 and t-1 in mm per month 
DP = Deep percolation in mm per month 
Ro = Runoff in mm per month 
Pe = monthly precipitation in mm per month 
Eff = efficiency of the center pivot installed within the field 
 

2. Crop yield depending on irrigation water requirement changes (Mirgol, Nazari, & 
Eteghadipour, 2020) 

 
They used the Stewart model to estimate the effect of irrigation water requirement changes on 
the yield of the crops: 
 
 
 
 
Where Ya is the actual yield (ton ha-1), Ym is the maximum yield (ton ha-1), ETa is the actual 
evapotranspiration (mm d-1), ETm is the maximum evapotranspiration, and Ky is the coefficient of 
the reaction of crop yield to water stress. See Figure 30 for Ym and Ky. Higher Ky numbers indicate 
higher sensitivity to water stress. See more in another article of the FAO (1979). 
 

 
3. Estimation of the water pumping energy demand (Ould-Amrouche, Rekioua, & Hamidat, 

2010 ) 

The peak power of the PV generator is given by: 

 

Figure 5 Maxiumum yield and reaction coefficient 
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Where G is the peak solar radiation intensity (1 kW/m2), Es is the annual average of solar radiation 
on a horizontal surface (5.5 kW h/ m2 day). 

4. Pumping water energy cost calculator (Engineering ToolBox, 2009): 

 

 

 

5. Solar photovoltaic water pumping (Maupoux, 2010) 
 

Estimation of requirements for effective water pumping system from solar PV system: 

i. The hydraulic energy required (kWh/day) = volume required (m³/day) x head (m) x 
water density x gravity / (3.6 x 106) = 0.002725 x volume (m³/day) x head (m)  

ii. The solar array power required (kWp) = Hydraulic energy required (kWh/day) / Av. 
daily solar irradiation (kWh/m²/day x F x E)  

With: 

F = array mismatch factor = 0.80 on average (a safety factor for real panel performance in hot sun 
and after 10-20 years) 

E = daily subsystem efficiency = 0.25 - 0.40 typically 



Copernicus Climate Change Service  

2019/C3S_428h_IISD-EU/SC1- Integration of climate data in the SAVi model Page 14 of 41 

Considerations for integration in the CDS toolbox 

1. Water delivery from precipitation (mm / month):  
Parameter in the model = total water from precipitation 
 

Pmonth = (TPt - TPt-1) * 1000 
 
Pmonth = monthly precipitation 
TPt = total precipitation in month t 
TPt-1 = total precipitation in month t-1 
1000 = conversion from m to mm per month 
 

2. Runoff (mm / month): 
Parameter in the model = Runoff 

E month = (Rt - Rt-1) * 1000 
 
R month = monthly runoff 
Rt = total runoff in month t 
Rt-1 = total runoff in month t-1 
1000 = conversion from m to mm per month 
 

3. Rainfall per month (mm/month): 
Parameter in the model = seasonal precipitation 
 

Pmonth1 = SUM (precipitation fluxmonth1) 
 
Pmonth1 = monthly precipitation in month 1 (January) 
Precipitation fluxmonth1 = total rainfall in month 1 (January) 
 

4. Long term average precipitation (mm/month): 
Parameter in the model = Long term average precipitation 
 

LTMPt0 = Average (Pmonth1-12 over the last 20years) 
 
LTMPt0 = long term monthly precipitation at time t 
 

5. Rainfall per day (mm/day): 
Parameter in the model = daily precipitation 
 

Pday1 = SUM (precipitation fluxday1) 
 
Pday1 = daily precipitation in day 1  
Precipitation fluxday1 = total rainfall during day 1. 
 
The same approach applies to all other days of the month. 
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6. Rainy spell 
Parameter in the model = Consecutive days of rain 
 

Consecutive days with raint0 = IF "Rainfall per day"t0 > 0, 
THEN "1 + Consecutive days with raint-1", ELSE "0" 

 
Rainfall per dayt0 = the indicated rainfall for today 
Consecutive days with raint-1 = previous consecutive days with rain (if any) 
 
Data inputs 

- Soil moisture (%) - Soil moisture gridded data from 1978 to present 
- Runoff (m) - ERA5-Land monthly averaged data from 1981 to present 
- Precipitation (m) - ERA5-Land monthly averaged data from 1981 to present 
 

2.1.1.2 Efficiency (evapotranspiration) 
 

● Climate impact  
 
To express which percentage of irrigation water is used efficiently and which percentage is lost, 
the term irrigation efficiency is used. The scheme irrigation efficiency (e in %) is that part of the 
water pumped or diverted through the scheme inlet which is used effectively by the plants 
(Brouwer, Prins, & Heibloem, 1989). 
 

● Results 
 
The FAO indicates that depending on the type of irrigation method surface, sprinkler, drip, field 
efficiency will vary from 60% to 75% and 90% respectively. (Brouwer, Prins, & Heibloem, 1989) 
 

● Methodology 
 
Method 1 (Brouwer, Prins, & Heibloem, 1989) 
 
The scheme irrigation efficiency can be subdivided into: 

1. The conveyance efficiency (ec) which represents the efficiency of water transport in canals 
2. The field application efficiency (ea) which represents the efficiency of water application in 

the field. 
 

NIRcrop = ETcrop / IE / WCE 
 
NIRcrop = Net irrigation requirements in mm per hectare per month 
Etcrop = Crop evapotranspiration in mm per month 
IE = Irrigation efficiency in %  
WCE = Water conveyance efficiency in % 
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Net irrigation water demand depends on the application efficiency of irrigation systems and the 
water conveyance efficiency. For the examples provided below (irrigation methods), WCE will be 
kept constant (0.9), due to a lack of information on the length of the irrigation channels.  
 
A calculation of IE is provided:  
 

 
 
We also extracted Figure 32 and Figure 31 (Brouwer, Prins, & Heibloem, 1989): 
 

 
Method 2 (Das, et al., 2018) 
 
If the crop is more environmental friendly (organic) we can use this formula: 
 

NIRcrop organic = NIRcrop × (irrigation system) × 0.86 
 
Whereby: 
NIRcrop organic = net irrigation requirements organic crops in mm/ha/month 
NIRcrop (irrigation system) = net irrigation requirements conventional crops by for flood, sprinkler 
and drip irrigation in mm / ha / month 
0.86 = Multiplier reducing irrigation requirements by 14%. 
 

Figure 6 Conveyance efficiency 

Figure 7 Field application efficiency 



Copernicus Climate Change Service  

2019/C3S_428h_IISD-EU/SC1- Integration of climate data in the SAVi model Page 17 of 41 

Considerations for integration in the CDS toolbox 

Evapotranspiration (Brouwer & Heibloem, 1986): 
 

1. The crop water need (ET crop) is defined as the depth (or amount) of water needed to 
meet the water loss through evapotranspiration. In other words, it is the amount of water 
needed by the various crops to grow optimally. 

 
2. The crop water need and factor (Kc) depend on: 

 
- The climate: in a sunny and hot climate crops need more water per day than in a cloudy 

and cool climate 
- The crop type: crops like maize or sugarcane need more water than crops like millet or 

sorghum 
- The growth stage of the crop: fully grown crops need more water than crops that have 

just been planted. 
 
The influence of the climate on crop water needs is given by the reference crop 
evapotranspiration ETo. The ETo is usually expressed in millimeters per unit of time, e.g. mm/day, 
mm/month, or mm/season.  
 
We estimate the crop water need (ET crop) in mm/day with its evapotranspiration (ETo) in 
mm/day and its factor (Kc): 
 

ETcrop = ETo * Kc 
 
Kc estimation: 
Step 1 - Determination of the total growing period of each crop 
Step 2 - Determination of the various growth stages of each crop 
Step 3 - Determination of the Kc values for each crop for each of the growth stages 
 
Climate adjusted Kc (Brouwer & Heibloem, 1986): 
 

Kc climate =  
Kcbase + IF u< 2: AND: RH >80% THEN "-0.05" ELSE "0" + IF u>5:  

AND: RH<50% THEN "0.05"ELSE "0" 
 
Whereby: 
Kcbase = Baseline crop factor based on crop and development stage 
u = wind speed (m/s) 
RH = Relative humidity 
 
"Kc values should be reduced by 0.05 if the relative humidity is high (RH > 80%) and the wind 
speed is low (u < 2 m/sec), e.g. Kc = 1.15 becomes Kc = 1.10. The values should be increased by 
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0.05 if the relative humidity is low (RH < 50%) and the wind speed is high (u > 5 m/sec), e.g. Kc = 
1.05 becomes Kc = 1.10." 
 
Climate adjusted Kc (includes plant height) (Djaman, et al., 2018) 
 

 
 

KcStage is the standard value according to FAO-56 approach (Allen, Pereira, Raes, & Smith, 
2006) 
U2 is the value for daily wind speed at 2 m height over grass during the growth stage (m/s) 
RHmin is the value for daily minimum relative humidity during the growth stage (%) 
H is the Plant height for each growth stage (m) (0.1 m–10 m) 
 
Increased evapotranspiration due to temperature (dimensionless) (Kosa, 2011) 
 
Parameter in the model = Effect of temperature on evapotranspiration 
 

Eto = -0.028x² + 1.7608x - 22.932 
 
Eto = Actual daily evapotranspiration 
x = daily temperature in °C 
 
This model is based on Kosa (2011) and has a R² value of 0.987, which could be used to establish 
a multiplier for evapotranspiration based on a set point (say 17°C).  
 
Data required: 

- Evapotranspiration (m of water equivalent): ERA5-Land monthly averaged data from 1981 to 
present 

- Wind speed (m/s): ERA5 monthly averaged data on single levels from 1979 to present 
- Humidity (%):ERA5 monthly averaged data on pressure levels from 1979 to present 
- Evapotranspiration (m of water equivalent): ERA5-Land monthly averaged data from 1981 to 

present 
 

2.2 Integration of literature review with the CDS datasets  
 
See general instructions in the energy section.  
 
Datasets: 

• ERA5 monthly data on single level 
• CMIP5 monthly data on single level 
• ERA5 daily data on single level 
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Indicators created: 
• Precipitation:  

o Units: mm per month 
o Frequency: monthly 
o ERA5 variable: “Mean total precipitation rate” 
o CMIP5 variable: “Mean precipitation flux“ 
o Note different: original units in mm/s  

• Evaporation 
o Units: mm per month 
o Frequency: monthly 
o ERA5 variable: “Mean evaporation rate” 
o CMIP5 variable: “Evaporation“ 
o Note different:  original units in mm/s, sign convention in ERA5 adjusted to 

CMIP5 convention (positive) 
• Runoff 

o Units: mm per month 
o Frequency: monthly 
o ERA5 variable: “Mean runoff rate” 
o CMIP5 variable: “Runoff“ 
o Note different:  original units in mm/s 

• Air temperature 
o Units: degrees Celsius 
o Frequency: monthly 
o ERA5 variable: “2 m temperature” 
o CMIP5 variable: “2 m temperature“ 
o Note different: original units in Kelvin 

• Relative humidity 
o Units: % 
o Frequency: monthly 
o ERA5 variable: calculated from “2 m temperature” and “2 m dewpoint 

temperature” 
o CMIP5 variable: near_surface_relative_humidity“ 
o Note: see energy asset for more information 

• Daily maximum temperature 
o Units: degrees C 
o Frequency: monthly 
o ERA5 variable:  “2m_temperature” aggregated from hourly data 
o CMIP5 variable: near_surface_relative_humidity“ 
o Note: optional asset (implemented by not added by default to the asset bundle 

because it takes a long time to calculate) 
 

More detailed information about precipitation variable in ERA5/CMIP5 can be found in the road 
asset (“road runoff”). 
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2.3 Integration of climate indicators into the SAVi irrigation model 

Figure 33 shows the CLD of the SAVi Irrigation model including indicators developed for the CDS 
toolbox (highlighted in pink). CDS toolbox climate indicators related to irrigation include seasonal 
precipitation (including extreme events), net crop water requirements, and available surface 
water supply. 

 

The CDS indicator seasonal precipitation refers to the precipitation per month in a given 
geographical context. Data on seasonal precipitation obtained from the CDS toolbox will hence 
provide location-specific information concerning total rainfall and extreme weather events, such 
as floods or droughts. Further, data will be available with monthly time steps, allowing to estimate 
changes in the rainy season where relevant, and related impacts on the growing season and 
suitability of crops. 

Net irrigation requirements in the CDS toolbox provide information about the amount of water 
required for irrigation to ensure maximum yields. This parameter accounts for crop water 
requirements, precipitation and evaporation and hence provides net irrigation requirements per 
hectare, depending on the type of crop. It will support the assessment of required investments in 
irrigation. 

Available surface water supply depends on total rainfall, evaporation and groundwater recharge, 
all of which are obtained from the CDS database. In the SAVi model, available water supply from 
surface water is used to calculate the water supply and demand balance and to analyze potential 
conflicting uses for water (e.g. potable use versus irrigation). 
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2.4 Behavioral impacts resulting from the integration of climate variables 

The use of the seasonal precipitation indicator obtained from the CDS replaces the less dynamic 
formulation concerning precipitation in the SAVi model with location-specific information. This 
supports assessing irrigation requirements by providing more accurate data on precipitation, both 
historical and future, and by allowing to generate forecasts using a variety of climate scenarios. 
Precipitation will affect crop productivity, with and without irrigation, production and revenues, 
and hence will determine the economic viability of agriculture production. 

Obtaining net irrigation requirements from the CDS toolbox leads to improved forecasts or total 
irrigation requirements and potential future water shortages on a monthly or seasonal basis. This 
will impact the total water used for irrigation, irrigation-related energy use and total irrigation 
cost (total capacity requirement, related capital and O&M cost, and employment creation). 
Further, the implementation of this indicator into the CDS toolbox allows to replace existing 
variables and equations in the SAVi model, making projections more accurate. 

The estimation of surface water supply allows for a system-wide analysis of water scarcity 
impacts, going beyond irrigation. It will inform whether a reduction in agriculture land will 
emerge, because of lower yields, leading to loss of employment. The use of this CDS indicator in 
the SAVi model will affect water availability for potable, industrial and agricultural use and affect 
water available for irrigation, depending on water resource allocation. 

2.5 Simulation results 

Required irrigation and related water use are heavily dependent on climate variables such as 
precipitation and temperature. Four indicators were developed for the integration of climate 
variables from the CDS database into SAVi Irrigation: (1) irrigation requirements per hectare, (2) 
total irrigation requirements per hectare (including water conveyance loss), (3) indicated surface 
water supply, and (4) indicated groundwater supply. 

2.5.1 Net and total irrigation requirements 

In the SAVi model, irrigation requirements refer to the amount of water that is required for 
irrigation accounting for evaporation and precipitation. Total irrigation requirements refer to the 
total amount of water required per hectare considering the efficiency of water conveyance 
infrastructure and installed irrigation systems. Both formulations use monthly precipitation and 
monthly crop water requirements to estimate the water required for irrigation. The equation 
used for net irrigation requirements is based on the crop water requirements indicated in Table 
10. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
120 60 0 0 0 0 0 80 120 120 120 120 
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Table 2: Indicated crop water requirements per month, in mm per hectare 

The equation used for calculating the irrigation requirements per crop uses the indicated crop 
water requirements and an evaporation fraction based on local data (e.g. 45%).  
 
Net irrigation requirements per hectare = MAX(0, Indicated crop water requirement per hectare 

– (monthly precipitation * (1 – Evaporation fraction))) 
 

The MAX function is applied to prevent net irrigation requirements from taking negative values 
in case that monthly precipitation exceeds the required crop water supply. The risk of floods is 
analysed separately. 
 
The total amount of water needed to irrigate crops depends, in addition to rainfall and 
evaporation, on the efficiency of water conveyance infrastructure and the efficiency of irrigation 
technologies. To obtain the total irrigation requirements per hectare (or water demand for 
irrigation), an average irrigation efficiency multiplier of 50% (assuming flood irrigation) and an 
average water conveyance efficiency of 95% are applied to the net irrigation water demand per 
hectare. The equation used is documented below 
 
Total irrigation requirements per hectare = Net irrigation requirements per hectare / Efficiency of 

irrigation technology / Efficiency of water conveyance infrastructure 
 
The results for net irrigation requirements per hectare are presented in monthly averages per 
decade and based on the IPSL RCP8.5 scenario. The results for the average net irrigation required 
per month for maize is presented in Table 11 for each decade from 1980-1990 to 2090-2100. 
 

Decade Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total  
relative to 

1980-
1990 

1980-1990 33.2 14.7 0.0 0.0 0.0 0.0 0.0 72.7 103.8 62.5 51.5 44.5 382.8   
1990-2000 56.2 17.9 0.0 0.0 0.0 0.0 0.0 71.1 100.0 59.4 51.3 44.7 400.6 4.6% 

2010-2020 48.8 14.7 0.0 0.0 0.0 0.0 0.0 72.1 105.5 81.4 61.4 60.6 444.5 16.1% 

2040-2050 55.9 10.5 0.0 0.0 0.0 0.0 0.0 71.1 105.8 80.9 59.8 50.2 434.2 13.4% 

2070-2080 54.9 17.8 0.0 0.0 0.0 0.0 0.0 77.3 104.5 74.8 60.8 48.5 438.5 14.6% 

2090-2100 65.7 32.3 0.0 0.0 0.0 0.0 0.0 77.8 103.1 77.8 56.4 57.7 470.8 23.0% 
Table 3: Net irrigation requirements, monthly averages per decade 

The results in Table 11 indicate a relative increase of 4.6% between the decades 1980-1990 and 
1990-2000. By 2090-2100, the net irrigation requirements per hectare are projected to increase 
by 23% compared to 1980-1990 driven by the decline in precipitation. The absolute increase 
between 1980-1990 and 2090-2100 is 88 mm per year, which is equivalent to 880,000 litres per 
hectare per year in additional water requirements. Figure 34 below illustrates the development 
of net irrigation requirements per hectare for the area of Johannesburg.  
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Figure 9: Net irrigation requirements per hectare for Johannesburg, IPSL RCP8.5 scenario 

The trend in total irrigation water requirements per hectare is identical to the trend in irrigation 
requirements per hectare, unless there is a change in irrigation efficiency or the efficiency of 
water conveyance infrastructure. Table 12 shows how total irrigation water requirements 
compare to irrigation requirements in each decade. For months without irrigation, the value is 1. 
During the decade 1980-1990, total irrigation water requirements are on average 2.11 times 
higher than crop water requirements. By 2090-2100, total irrigation water requirements are on 
average 2.97 times higher than during the decade 1980-1990. Considering the monthly crop 
water demand during the decade 2090-2100, the results indicate that irrigation requirements 
may be almost 5 times as high (February) as net irrigation requirements.  
 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1980-1990 2.11 2.11 1.00 1.00 1.00 1.00 1.00 2.11 2.11 2.11 2.11 2.11 
1990-2000 3.56 2.56 1.00 1.00 1.00 1.00 1.00 2.06 2.03 2.00 2.10 2.12 
2010-2020 3.09 2.11 1.00 1.00 1.00 1.00 1.00 2.09 2.14 2.74 2.51 2.87 
2040-2050 3.54 1.50 1.00 1.00 1.00 1.00 1.00 2.06 2.15 2.73 2.44 2.38 
2070-2080 3.48 2.55 1.00 1.00 1.00 1.00 1.00 2.24 2.12 2.52 2.48 2.30 
2090-2100 4.16 4.62 1.00 1.00 1.00 1.00 1.00 2.25 2.09 2.62 2.31 2.73 

Table 4: Relative water use total irrgation requirements vs net irrigation requirements 

Between 1979 and 2100, the cumulative difference between net and total irrigation requirements 
is 55,871 mm per hectare, which is equivalent to 550,871,000 litres or 4,667,467 litres per hectare 
per year on average. If an irrigation efficiency of 75% is assumed, the cumulative difference 
declines from 55,871 mm per hectare to 20,398 mm per hectare, which is a net reduction of 63.5% 
in irrigation water use compared to the scenario with 50% irrigation efficiency.  
 

2.5.2 Surface and groundwater supply 
Surface and groundwater supply indicate the amount of renewable surface and groundwater 
sources available per hectare. Both indicators are calculated based on monthly precipitation, the 
evaporation fraction and the percolation fraction (the share of precipitation that reaches 
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groundwater aquifers). The equations used for the calculation of the indicated surface and 
groundwater supply are presented below.  
 
Indicated surface water supply = Monthly precipitation * Evaporation fraction * (1 - Percolation 

fraction) 
 

Indicated groundwater supply = Monthly precipitation * Evaporation fraction * Percolation 
fraction 

 
The results indicate the monthly availability of ground and surface water respectively. Simulation 
results for indicated surface water supply and indicated groundwater supply are presented in 
Figure 35and Figure 36 respectively, using the IPSL RCP8.5 projections for Johannesburg. 
 

 
Figure 10: Indicated surface water supply per hectare, IPSL RCP8.5 scenario 

.  
Figure 11: Indicated groundwater supply per hectare, IPSL RCP8.5 scenario 
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Annex I: Code for establishing the CDS Toolbox-SAVi link 

Code related to offline processing of CDS Toolbox and CDS API data for the C3S_428h_IISD-EU 
project. 

How does this code relate to the CDS API ? 

This code builds on the powerful CDS API but focuses on local impact analysis specific for the 
C3S_428h_IISD-EU project. It makes it easier to retrieve a time series for a specific location or 
region, and save the result to a CSV file (a simpler format than netCDF for most climate 
adaptation practitioners). Additionally, the code combines variables across multiple datasets, 
aggregate them into asset classes (such as all energy-related variables) and perform actions 
such as bias correction (use of ERA5 and CMIP5). 

Code available for download  

The easy way is to download the zipped archive: - latest (development): 
https://github.com/perrette/iisd-cdstoolbox/archive/master.zip - or check stable releases with 
description of changes: https://github.com/perrette/iisd-cdstoolbox/releases (see assets at the 
bottom of each release to download a zip version) 

The hacky way is to use git (only useful during development, for frequent updates, to avoid 
having to download and extract the archive every time):  

- First time: git clone https://github.com/perrette/iisd-cdstoolbox.git  

- Subsequent updates: git pull from inside the repository 

Installation steps 
- Download the code (see above) and inside the folder. 

- Install Python 3, ideally Anaconda Python which comes with pre-installed packages 

- Install the CDS API key: https://cds.climate.copernicus.eu/api-how-to  

- Install the CDS API client: pip install cdsapi 

- Install other dependencies: conda install --file requirements.txt or pip install -r 
requirements.txt 

- Optional dependency for coastlines on plots: conda install -c conda-forge cartopy or see 
docs 

- Optional dependency: CDO (might be needed later, experimental): conda install -c conda-
forge python-cdo 

Troubleshooting: - If install fails, you may need to go through the dependencies in 
requirements.txt one by one and try either pip install or conda install or other methods specific 
to that dependency. - In the examples that follow, if you have both python2 and python3 
installed, you might need to replace python with python3. 

https://github.com/perrette/iisd-cdstoolbox/archive/master.zip
https://github.com/perrette/iisd-cdstoolbox/releases
https://github.com/perrette/iisd-cdstoolbox.git
https://cds.climate.copernicus.eu/api-how-to
https://scitools.org.uk/cartopy/docs/latest/installing.html
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CDS API 

Download indicators associated with one asset class. 

Examples of use: 

python download.py --asset energy --location Welkenraedt  

The corresponding csv time series will be stored in indicators/welkenraedt/energy. Note 
that raw downloaded data from the CDS API (regional tiles in netcdf format, and csv for the 
required lon/lat, without any correction) are stored under download/ and can be re-used across 
multiple indicators. 

The indicators folder is organized by location, asset class, simulation set and indicator name. 
The aim is to provide multiple sets for SAVi simulation. For instance, era5 for past simulations, 
and various cmip5 versions for future simulations, that may vary with model and experiment. 
For instance the above command creates the folder structure (here a subset of all variables is 
shown): 

indicators/ 
  welkenraedt/ 
    energy/ 
      era5/ 
        2m_temperature.csv 
        precipitation.csv 
        ... 
      cmip5-ipsl_cm5a_mr-rcp_8_5/ 
        2m_temperature.csv 
        precipitation.csv 
        ... 
      ... 

with two simulation sets era5 and cmip5-ipsl_cm5a_mr-rcp_8_5. It is possible to specify 
other models and experiment via --model and --experiment parameters, to add further 
simulation sets and thus test how the choice of climate models and experiment affect the result 
of SAVi simulations. 

Compared to raw CDS API, some variables are renamed and scaled so that units match and are 
the same across simulation sets. For instance, temperature was adjusted from Kelvin to degree 
Celsius, and precipitation was renamed and units-adjusted into mm per month from original 
(mean_total_precipitation_rate (mm/s) in ERA5, and mean_precipitation_flux (mm/s) in 
CMIP5). Additionally, CMIP5 data is corrected so that climatological mean matches with ERA5 
data (climatology computed over 1979-2019 by default). 

Additionally to the files shown in the example folder listing above, figures can also be created 
for rapid control of the data, either for interactive viewing (--view-timeseries and --view-
region) or or saved as PNG files (--png-timeseries and --png-region), e.g. 
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python download.py --asset energy --location Welkenraedt --png-timeseries --
png-region 

Single indicators can be downloaded via: 

python download.py --indicator 2m_temperature --location Welkenraedt 

The choices available for --indicator , --asset and --location area defined in the following 
configuration files, respectively: 

• controls which indicators are available, how they are renamed and unit-adjusted: 
indicators.yml (see sub-section below) 

• controls the indicator list in each asset class: assets.yml 

• controls the list of locations available: locations.yml 

Full documentation, including fine-grained controls, is provided in the command-line help: 

python download.py --help 

Visit the CDS Datasets download pages, for more information about available variables, models 
and scenarios:  

- ERA5: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-
monthly-means?tab=form   

- CMIP5: https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-
monthly-single-levels?tab=form  

 In particular, clicking on “Show API request” provides information about spelling of the 
parameters, e.g. that “2m temperature” is spelled 2m_temperature and “RCP 8.5” is spelled 
rcp_8_5. 

Indicator definition 

This section is intended for users who wish to extend the list of indicators currently defined in 
indicators.yml. It can be safely ignored for users who are only interested in using the existing 
indicators. 

Let’s see how 10m_wind_speed is defined: 
- name: 10m_wind_speed 
  units: m / s 
  description: Wind speed magnitude at 10 m 

The fields name and units define the indicator. Description is optional, just to provide some 
context. It is possible to provide scale and offset fields to correct the data as (data + 
offset) * scale. Here for 2m temperature: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels?tab=form
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- name: 2m_temperature 
  units: degrees Celsius 
  description: 2-m air temperature 
  offset: -273.15  # Kelvin to degrees C 

# denotes a comment to provide some context. Some indicators have different names in ERA5 
and CMIP5, and possibly different units. That can be dealt with by providing era5 and cmip5 
fields, which have precedence over the top-level fields. Here the evaporation definition: 

- name: evaporation 
  units: mm per month 
  era5: 
    name: mean_evaporation_rate  # different name in ERA5 
    scale: -2592000  # change sign and convert from mm/s to mm / month 
  cmip5: 
    scale: 2592000  # mm/s to mm / month 

In that case both scaling and name depend on the dataset. In CMIP5 which variable name is 
identical to our indicator name, the name field can be omitted. In ERA5, evaporation is negative 
(downwards fluxes are counted positively), whereas it is counted positively in ERA5. 

Indicators composed of several CDS variables can be defined via compose and expression 
fields. Let’s look at 100m_wind_speed: 

- name: 100m_wind_speed 
  units: m / s 
  description: Wind speed magnitude at 100 m 
  era5: 
    compose: 
      - 100m_u_component_of_wind 
      - 100m_v_component_of_wind 
    expression: (_100m_u_component_of_wind**2 + _100m_v_component_of_wind**2)
**0.5 
  cmip5: 
    name: 10m_wind_speed 
    scale: 1.6  # average scaling from 10m to 100m, based on one test locatio
n (approximate!) 

In ERA5, vector components of 100m wind speed are provided. Our indicator is therefore a 
composition of these two variables, defined by the expression field, which is evaluated as a 
python expression. Note that variables that start with a digit are not licit in python and must be 
prefixed with an underscore _ in the expression field (only there). 

For complex expressions, it is possible to provide a mapping field to store intermediate 
variables, for readability. This is used for the relative_humidity indicator: 

- name: relative_humidity 
  units: '%' 
  era5: 
    compose: 
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      - 2m_temperature 
      - 2m_dewpoint_temperature 
    expression: 100*(exp((17.625*TD)/(243.04+TD))/exp((17.625*T)/(243.04+T))) 
    mapping: {T: _2m_temperature - 273.15, TD: _2m_dewpoint_temperature - 273
.15} 
  cmip5: 
    name: near_surface_relative_humidity 

where T and TD are provided as intermediary variables, to be used in expression. 

ERA5-hourly dataset can be retrieved via frequency: hourly field, and subsequently 
aggregated to monthly indicators thanks to pre-defined functions daily_max, daily_min, 
daily_mean, monthly_mean, yearly_mean. For instance: 

- name: maximum_daily_temperature 
  units: degrees Celsius 
  offset: -273.15 
  cmip5: 
    name: maximum_2m_temperature_in_the_last_24_hours 
  era5: 
    name: 2m_temperature 
    frequency: hourly 
    transform:  
      - daily_max 
      - monthly_mean 

This variable is available directly for CMIP5, but not in ERA5. It is calculated from 
2m_temperature from ERA5 hourly dataset, and subsequently aggregated. Note the ERA5-
hourly dataset takes significantly longer to retrieve than ERA5 monthly. Consider using in 
combination with --year 2000 to retrieve a single year of the ERA5 dataset. 

Currently CMIP5 daily is not supported. 

Netcdf to csv conversion 

Convert netcdf time series files downloaded from the CDS Toolbox pages into csv files (note: 
this does not work for netcdf files downloaded via the cds api): 

python netcdf_to_csv.py data/*nc 

Help: 
python netcdf_to_csv.py --help 
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